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ON STABILITY UNDER CONSTANTLY ACTING PERTURBATIONS* 

V. I. VOZLINSKII 

A general formulation of the Volterra theorem on the parametric stability of steady 
motion of a gyrostat (/l/ page 261) (**) is presented. The fundamental aspects of 
its proof together with the concept of Liapunov's direct method are extended to 

more general theorems on parametric stability. Volterra's geometric constructions 
are generalized so that his proofs can be applied to certain theorems on stability 
under constantly acting perturbations, and that these and theorems on parametric 
stability can be considered from a single point of view. Some applications of 
Volterra's theorem are examined, and a few examples presented. 

1. We use the following notation: z for the vector of an 11 -dimensional real phase space 

I{" with zero at 0 and S for the region of that space containing inside it point 0; p for 

the vector of an nl-dimensional space of parameters P with zero at 0; T for the real posit- 
ive semi-axis of time; @(El) for the F-neighborhood of point 8; O.?(E)) for the same 

neighborhood with point 8) removed; O*B(0)(6 < E) for the 

a b rx closing of the region obtained by excluding the neighbor- 
X hood 06(H) from neighborhood OF(U) (the "annular region" 

G shown shaded in Fig.l,a) ; r (Al), Al*. and @(nl) for 

(OJ 
the boundary and closure, and the E-neighborhood of some 
set .lI C: X; TAf(Jf c X) for the set of points (t,z) in the 

space T x I?' such that tGl and 5 E 211, for instance, 
region 2'0,?(0) (shown shaded in Fig.l,b). 

Let I'(z) be a continuous function and K (i) cm S a 

component of a set of the level of T'(5) =- h. We call 

Fig.1 K(h) the centrally separating component in X, if it is 

bounded and separates some region O(l)30 from the exterior of that region. Such components 

exist, for example, in a positive definite function. The boundary of region 

in - I)-dimensional cycle /?/ that evidently belongs to Ii(h). 

U (h) is an 

If function V depends in 

addition to r on parameter p, it will be denoted by V,(r) and, respectively Ii,(h) and CT, (h). 

The component Kp(h) is shown in Fig.l,a by dash lines. 
Let us consider the autonomous dynamic system 

z' f,>(J) 00 (0) = 0) (1.1) 

where fp(z) is an n-dimensional vector function continuous with respect to 5 '2 X andp E P. 
The conditions under which the equilibrium position !3 of the unperturbed system (p = 0) 

is stable in the sense that for each s>.O there exist such S>O and q> 0 that 

(i.t > C,) Jp (to> x0; 4 GE @ @) (1.2) 

is valid for every s,~Oa(e) and all PY II P II ( 11 , were investigated in /l/. It means that 

fort;~t,theintegralcurvewhoseinitialpointis(t,,z,)is containedin s-tube T@(B) (pis fixed). 
Owing to the stationarity of system (1.1) at the beginning, as well as at the end, as 

defined above, it is possible to introduce the condition for "each t,c= T .‘I We obtain two 

equivalent statements 

where A denotes the 
These statements 

(Vt, E T)(Yc '> 0)(X6, q ;- O)(Vz, E Oh (O))(V // p // < q): A. 

0fs: 0)(36, q)(Vs, E 06 (0))(V /I p 11 < q)(Vt, E T): A 

expression (1.2). 

(1.3) 

(1.4) 

have also a meaning for the nonautonomous system 

5' y=~ fp (t, Lz) (f. (t, e) G 0) (1.5) 

*Prikl.Matem.Mekhan.,44,No.3,408-417,198O 

**) v. V. Rumiantsev had repeatedly pointed out Volterra's foresight in anticipating in /l/ 
a number of later developments in the theories of the gyrostat and of stability. His theorem 
and its general character were brought to the writer's attention by V. N. Rubanovskii. 
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but in this case they are not equivalent: in (1.3) the numberc 6 and rl depend on s and to I 
while in (1.4) only on E (parametric stability with respect to t,E T. 

We thus obtain the following definition of Volterra's concept of parametric stability. 

Definition 1.1. The equilibrium position 8 of the unperturbed system 5' -fo(Z) or 

P' = fo(t,s) is called stable (stable uniformly with respect to to) under perturbation of p, 

if the statement (1.3) or (1.4) is valid. 

This definition may be used for perturbations of a more general type such as constantly 

acting perturbations, if P is assumed to be the vector function ~(t,z) = [p’(t,s),.. .,p”(t,z)] 
and pto be the space of such functions (perturbations) with one or another metric. If func- 

tions ~(t,s) are continuous and bounded in TX, then, by writing system (1.5) in the form 

2' = fo (t, x) + p (t, 5) (fo(t, e) Es 0) (1.6) 

and introducing the norm 

IIP II = sup IP’(h 4 I, (t, 5) E TX, i = 1, . ., n 
we obtain the definition /3/ 

(1.7) 

Definition 1.2. The equilibrium position 0 of the unperturbed system 5' = fo ct, 4 
is called stable (uniformly stable with respect to t,,) ) under constantly acting perturbations, 

if the statement (1.3) or (1.4) is valid. 

Remark 1.1. Perturbations of the right-hand sides of differential equations were 

considered by Liapunov in implicit form in his first method (see Chetaev's comments in /4/), 

and earlier, by Poincare /5/. (Ch.18). A related question was considered in /6/. The notion 

that it is necessary to take into account constantly acting perturbations was explicitly sug- 

gested by Chetaev /7/. The introduced by him concept of constantly acting perturbing forces, 

which is at the base of the formulation of the known stability postulate /7/, was used in /7, 

8/ for autonomous perturbations. A class of potential perturbations was defined in /7/. 

The definition of stability under constantly acting perturbations given above, appeared 

in /3/. Definitions equivalent to it in essential features appeared in /9,10/ (in /9/ para- 

meter E is taken as the perturbation norm, and in /lo/ stability was considered with respect 

to functions of the type Qi in /4/ in /7/ with respect to "observed functions" ah. and Fk ). 
The considered concept of stability was extended in /11,12/ to the case of metric in the 
perturbation space in the mean, and to stability with respect to probability. 

The concept of the limit point of the stability region /13,14/ represents a particular 

case of parametric stability definition 1.1 for a special type of parameters. Related problems 
were considered in /15- 17/, and a more general concept of stability under parametric perturba- 

tions appeared in /18,19/. 

2. In the defined above notation the Volterra theorem may be formulated as follows. 

Theorem 2.1. If system (1.1) has for every p the first integral V,(5), function V,(Z) 
is continuous with respect to 5 and p, and function V,(s) positive definite at point 0 ,the 
equilibrium position 0 of the unperturbed system is parametrically stable in the meaning of 

definition 1.1. 

The proof in /l/ is, except the terminology, as follows. 

Let us assume that the closed region X is sufficiently small for being contained in the 

region of positive definiteness of functionv,,(s), and that E is any positive number. We shall 
consider the neighborhood E = @(e)c X (see Fig.l,a). Since function V,(s) is continuous, 
there must exist a neighborhood D = @(e)CE such that 

sup V, (5) < inf V, (5) 
TED* STEryE) 

(2.1) 

Owing to the closure of region X, function V is uniformly continuous with respect to 
zz and p , respectively, in that region, i.e. 

(V&1 > 0)(3rl > WV II P II -=c q)(Vx E X): 1 I Vp (4 - V, (4 I i= El (2.2) 

which implies that inequality (2.1) is coarse with respect to p, hence there exists an 

n > 0 such that (2.1) remains valid for II P II < 11 - To prove this "1 = (h" - h')/2, where 
h' and h" are the left- and right-hand sides of (2.1), was set in /l/. 

Since function V,(z) does not increase along the trajectory of system (1.1) and inequal- 
ity (2.1) holds for I/p Il<q, hence any trajectory of system (1.1') that had intersected r(D) 
cannot intersect r(E), i.e. G is a trap for trajectories that begin in D. This proves the 
theorem. 

Thus the conclusion of parametric stability is derived in /I/ on the basis of the follow- 
ing three conditions which we shallcall the Volterra conditions. 
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10. In any neighborhood @(e) there exists region G= Oae(0) for which (2.1) is satis- 
fied; 

2O. The property of region G defined by (2.1) is coarse with respect to p; 

30. In any annular region GC X function V, does not increase along trajectories 
when lip /is fairly small. 

Remark 2.1. The theorem formulation in /l/ contains the condition of isolation of 

the equilibrium position f~ for p-0. Since that condition was used there only for proving 

the positive definiteness of function vO(z) for the considered mechanical system, and because 

it is not used in the proof of parametric stability, hence it has been omitted in the above 

formulation. 

Remark 2.2. If region G satisfies (2.11, it contains at least one centrally divid- 
ing component of function V,,(X). Hence condition 1 o implies the existence of a "concentric" 

set S,=(K,(h)J of centrally dividing components that converge at point 8 as h-0, and 
satisfy the monotonicity condition 

A1 < A? -> u0 (U c u, (M (2.3) 

When the equilibrium position f3 is isolated, that set is regular and fills some neighbor- 

hood Q.(e) (with point 0 removed), i.e. it constitutes the topographic system of Poincare. 

A function containing such set of components will be called positive regular. 

Isolation of the equilibrium position and the positive definiteness of function V, (z) is 
not indispensable either forthe existence of set S, which satisfies (2.3), or for the posit- 

ive regularity of that function. 

3. The concept of the Liapunov second method provides the possibility of extending 

Theorem 2.1 to the case in which the Liapunov function plays the part of function V. For 

this it is necessary to replace the condition that V,(z) must be the first integral by a con- 

dition that is sufficient for satisfying the Volterra condition 3O, or by that condition it- 

self. 
In terms of Liapunov function condition 3O is of the form 

(VG c X) (371 > W’ IIP I/ < q) (Vs E G): v; (5) < 0 (3.1) 

where V,‘(s) is the derivative defined by system (l.l), and G = Obe (0). We obviously obtain 

a generalization of Theorem 2.1. 

Theorem 3.1. If function V,(x) satisfies the following conditions: V,(z) is smooth 

with respect to r and continuous with respect to p, V,(r) is positive definite at point 8, 

and the derivative of function V,(z) satisfies (3.1) by virtue of system (l.l), then the equil- 

ibrium position of the unperturbed system is parametrically stable. 

Let us consider the case when the Liapunov function V,(z) is specified only for the un- 

perturbed system. Setting v, (z) = V,(s) we obtain the stationary with respect top set of 

components K,(h) such that condition 2 o is trivially satisfied. Although then V,(t) f Vi (x), 

the negative definiteness of Vi(z) is sufficient for (3.1). Although the inequality 

V'o'(5) < 0 may, possibly, be violated in O.e(e) when p#O, it remains valid in any closed 

region O,&(e) if ))p I/ is fairly small. 
Thus we obtain the theorem /13,14/. 

Theorem 3.2. If there exists a smooth function V,(s) that is positive definite at 

point El and has a negative definite derivative by virtue of the unperturbed system z'= fo(x), 

the equilibrium position of that system is parametrically stable. 
Since an asymptotic stability with respect to .Q and t, of the equilibrium position is 

necessary sufficient for the existence of the Liapunov functions appearing in Theorem 3.2 (see 

/19/), hence such stability of the unperturbed system equilibrium position is sufficient for 

its parametric stability. 
Theorem 3.2 was proved in /13,14/ in connection with the problem of safety of the stabil- 

ity region boundary. The point of parameter space is called in /13/ safe, if for respective 

parameter values the investigated equilibrium position is parametrically stable in the mean- 

ing of definition (1.1). Coefficients of the characteristic equation of the linearized system 

were taken in /13/ as parameters, and the stability region was understood to be the Routh- 

Hurwitz region of the parameter space. The simplest noncoarse systems (one zero or two imagin- 

ary roots) were analyzed in /13/, but in constructions required for proving the considered 
theorem only the existence of the Liapunov function with negative definite derivativebyvirtuo 

of the unperturbed system was used. These constructions were carried out in a general form 

in /14/. 
It was shown in /17/ (the basic theorem) that when the Liapunov function appearing in 

Theorem 3.2 exists for P=O, then, when Pi0 there exists the closed region A30 
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which is an invariant set of the perturbed system whose diameter approaches zero as p-+0. It 

follows from the above that a region bounded by any centrally dividing component K,(k) may be 

taken as region A, since any arbitrarily small component K,(1) an fairly small IIpII lies in 

the region V'<O. 

4. Let us consider the extension of the Volterra theorem to the case of constantly act- 

ing perturbations for system (1.6) (see definition 1.21. Let P be the space of perturbations 

p (t, z) with norm (1.71, To extend the theorems in Sect.3 to this case we, first, establish 

the analogy with constructions in Sects. 2 and 3. Point XEX of constructions in Sects.2 

and 3 corresponds to point (t,s)~ TX, function V,(t,t) to function V, (2) I region T@(B) 
in TX corresponds to neighborhood @(O) in X, and the cylindrical regions TX, TE = 

TOE (C3), TD = TOb (0), and TG = TOeb (0) to regions X, E,D, and G (see Fig.l,b). The component 

K,(h)c TX now denotes a component of the set of level V,(t, 5) = h, and region lJ,(h)~ TX 
obtains a similar meaning. 

Now, repeating the reasoning of Sect.2, that the Volterra conditions l"-30 imply stabil- 

ity under continuously acting perturbations in the meaning of (1.4), i.e. stability uniform 

with respect to t,. 

Condition lo. is satisfied for any positive definite function V,(t,x) which admits an 

infinitely small upper bound /2/. This follows directly from the definition of these concepts 

(with at least one centrally dividing component K,(h) in TG, see Fig.l,b). 
Condition 2O follows, as previously, from formula (2.2) which in conformity with the 

accepted here analogy, implies the continuity of V,(t, z) with respect to p that is uniform 

with respect to (t, Z)E TX, i.e. 

(VF1 >, Q(3ll > o)(y /IP /I < rl)(V (t, 5) E TX): I vp tt7 x) - v. (t, z) 1 < F1 (4.1) 

Condition 3O of the form (3.1) now becomes 

WTG = TO% (e))@ll > WV I/p // ==c q)(v (t, X) E TG): 1-p. (t. z) < 0 

Thus Theorem 3.1 converts to the following theorem /20/. 

Theorem 4.1. Let function V,(t, 5) smooth with respect to (t, Z) satisfy the follow- 

ing conditions: 1) V,(t, 2) is positive definite and admits an infinitely small upper bound; 

2) V,,(t,cz) is continuous with respect to p uniformly with respect to (t,z)=TX, i.e. it 
satisfies (4.11, and 3) V,‘(t,z) satisfies (4.2). Then the equilibrium position 8 of the un- 

perturbed system is stable under continuously acting perturbations uniformly with respect to 

r 01 i.e. (1.4) is satisfied. 

When p#O function V,(t,z) corresponds to function V(t,z) in /20/ which depends on t 
and z, and on perturbations R(t,z). If one assumes that condition (4.2) is satisfied through- 

out region TE (e.g., when vp (t, z) is the first integral), then, as noted in /20/, the stipul- 
ation of the existence of an infinitely small upper bound can be disregarded. Note that then 
the stability is generally nonuniform with respect to t,, i.e. (1.3) and not (1.4), is satis- 

fied (in that case it is sufficient for the 8-tube TD from which initial points are taken 

to be imbedded in region U(X) not for all tE T, but only on some segment IO, t*1,. 
Let us now consider the case when the Liapunov function V,(t, z) is specified only for 

the unperturbed system. As in Sect.3 we set v,(t,z)= v,(t, z). Components K,,(h) are then 
stationary with respect to p, so that (4.1) is trivially satisfied. The derivative of funct- 
ion Vcl (t> x) is by virtue of system (1.6) of the form 

V,. (t, 5) = V,'(t, 5) + (grad, V,(t, z), P (t, z)) (4.3) 

where the parentheses in the last term denote the scalar product, and V,' (t, 5) is the deriva- 
tive by virtue of the unperturbed system x' = fo(t, z). As is evident from (4.3), the negative 
definiteness of function V,‘(t, 5) is insufficient for (4.2), but (4.2) will be satisfied when 
the supplementary condition of boundedness of grad,V,(t,s) in TX is satisfied /3/. Moreover, 

the last condition is sufficient for the existence of an infinitely small upper bound of 

function V,(t, z), which means that condition lo is satisfied. 

Theorem 4.2. If there exists a positive definite smooth function V,(t,z) whose der- 
ivative is by virtue of the unperturbed system x'= fo(t, x) negative definite and partial 
derivatives with respect to 5 are bounded in region TX, then the equilibrium position of the 
unperturbed system is stable under constantly acting perturbations uniformly with respect to 

t0, i.e. (1.4) is satisfied. 

Remark 4.1. The distinctive feature of Sect.4 in comparison with Sects.2 and 3 is the 
noncompactness of region TX and of components KP(h). Owing to this the existence of an in- 
finitely small upper bound of function V,(t,z) is necessary if condition lo is to be satisfied. 
Hence conditions (4.1) and (4.2) do not follow, as previously, from the continuity of VP U. 2) 
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with respect to p and from the negative definiteness of VII' (C 4 , respectively. In the case 
of autonomous constantly acting perturbations in an autonomous system the above peculiarity 

is absent, and this case does not differ (as regards the considered above questions) from 
that of parametric perturbations of a perturbed autonomous system. 

5. The theorems of Sects.2 and 3 can be somewhat amplified. 

Theorem 5.1. If the conditions of Theorem 2.1 or 3.1 are satisfied, there exists for 

every neighborhood E=@(R) an n>O such that for any llPjl<n that neighborhood contains 

a stable invariant set B30 (dependent on p ) of system (1.1). 

Proof. The conditions of Theorems 2.1 and 3.1 imply the existence of the concentric 

set S,=(K,(h)J of centrally dividing components of function v, (4 I which satisfies (2.3) (see 
Remark 2.2). That set is generally irregular (if it is regular, the theorem is obviously 

valid). It can be shown on the basis of /21/ that, when the set S, exists, another concen- 

tric set can be found whose component K, has the following properties: in any neighborhood 

o(K,) there exists a centrally separating component which contains in the region bounded by 

it the COItIpOnent K, and is of a high level than K, (nonseparating components of lower level 
may also exist in the neighborhood O(K,)) . We assume that set SC, is chosen exactly so.Then 

the described property implies that: 1) the region bounded by any of the components of set 

S, is a stable invariant set of the unperturbed system; 2) the closed subset s,* CS, 
enclosed between the components Ko’ and K,," (K,‘cD; K,” PO = @) is coarse with respect to P, 

however small the neighborhood D=oa(0), i.e. for every o>O there exists an q>O (one 
and the same for all elements of setS,*)suchthatforflPII-<rl acentrally separating component K,, 

of function V,,(Z) can be found in the neighborhood @(K,)(K, cSo*), and that the set ST)* = jK,,) 

has the same property as S,'. The number r) can be selected so small that Kg’ c 1) , and the 

Volterra property 3O is satisfied in region (; = O:(O) (Fig.2). 

Thus the set S, can disintegrate when P#O only inside the U-neighborhood, while 

the subset of components not contained in D remains topologically unchanged for all fairly 

small II P II . The region bounded by any component lip’ of set S,,* contained in C; can be 

taken as the sought stable invariant set (Fig.2; point 0 may in this case represent an un- 

stable equilibrium position, or altogether not relate to the equilibrium position). Theorem 

5.1 is proved. 
Under conditions of Theorem 3.2 the set S, is regular (owing to the negative definiten- 

ess of function Vo'(z)). From this follows the following theorem (which appears in a differ- 

ent form in /16,17/). 

Theorem 5.2. If the conditions of Theorem 3.2 are satisfied, then: 1) the invariant 

set A =O&l)cX of the llnperturbed set and independent of p exists for all fairly small /I P/I; 

2) for any arbitrarily small neighborhood D =06cA there exists a number q>O and neighbor- 

hood B = O(O)cD such that for all l/P /I<11 the neighborhood B is an asymptotically stable 

invariant set with a region of asymptotic stability that contains A. 

Regions bounded by K,” and K,’ may be taken as the regions A and B, respectively, 

taking into account that K,rK, and assuming that lIpI/ is so small that in the region between 
R 0' and K"" V,.(z) < 0. 

Example 1. Let us consider the two-dimensional dynamic system investigated in /17/, 

setting in it g--l and taking P as the parameter. We obtain the system 21 = Px13; ~2' = - 5%. 

For the Liapunov function v = 2,2+ z22 /17/ function V' isnegative definite when P =O,while 

for cl>0 it assumes positive values in any neighborhood of zero but remains negative outside 

the circle zl*+zza< P which is bounded by the component of level V= p of function V. 

Hence the unperturbed system (lL=O) is parametrically stable, and the circle of radius I/s is 

an asymptotically invariant set of the perturbed system for all CL smaller that some S>O. 

As shown in /22/, the theory of equilibrium bifurcation 

" /2/ may, under specific conditions, be extended to problems 
of stability of steady motions of systems with ignorable co- 

ordinates by taking vector P of generalized momenta of ignor- 

able coordinates as the parameter of steady motion surface B. 

It follows from Theorem 2.1 that when the Routh potential 

W(z,p) (zis the vector of position coordinates and velocities) 

is positive definite with respect to 5 with P fixed, the re- 

spective steady motion is parametrically stable, i.e. stable 
not only under perturbations of z but also of p. This was 

first stated by Liapunov /23/; various proofs of this state- 

ment, based on a reasoning different from the one used here, 

appeared in /24-27/. 

Fig.2 

Establishment of the positive definiteness of the Routh 

potential at the bifurcation point presents difficulties owing 
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to the degeneration there of the second differential, however, if function W(z,p) is smooth 

with respect to = and continuous with respect to P, Lemma 2.1 implies the following statement 

/28/. 

Theorem 5.3. If (9,~‘) is a bifurcation point and there exists a cross section p = 

p(a) (ais a scalar and P0 = P (CO) of surface B, passing through it, and at which for a<a" 

a unique branch (right-hand branching) originates, then the positive definiteness of W with 

respect to I along that branch, when CC<&, is sufficient for the parametric stability of 

stationary motion (z", p”). 

Example 2. Consider the problem of stability of permanent vertical rotations of the 

Lagrange spinning top (see /27/). Points lying on the straight line +=fi3,9=0 in the space 

(I%, Bs, 0) 0% and B3 are the generalized momenta of ignorable coordinate.%> $,q,, , and 0,$ and 

cp are Euler's angles) correspond to these. When the Maievskii inequality is satisfied, the 

above straight line represents the unique branch of the steady motion surface at cross section 

pa= OS /27/, hence the permanent rotation is parametrically stable (*). 

Let us consider a conservative system. It was shown in /30/ that, if the potential en- 

ergy lI(q)(H(O)= 0) is continuous and has in any neighborhood of zero of the configuration 

space a centrally separating component of the positive level (condition A ), then the total 

energy in the phase space has the same property, hence the equilibrium 4=n,q.=0 is stable. 
From the proof of Theorem 5.1 follows the sufficiency of condition A for parametric stability. 

Theorem 5.4. If the energy of a conservative system continuously depends on para- 

meter p and when P =0 its potential energy satisfies condition A. then the equilibrium 

position of the unperturbed (p = 0) system is parametrically stable,andwhen {Ip/] is fair-y small 

there exists a stable invariant set that contains the phase space zero and contracts to it as 
p -0. 

Example 3. Let a conservative system in unperturbed state have potential energy of 

the type of the Painleve type (see /31/): n = w (-II q II-‘) sin (I! q lp). The components of its level 
are hyperspheres that tend to point /i = 0, and at any point of that neighborhood H assumes 
positive and negative values. By virtue of Theorem 5.4 the equilibrium T= o,q’=o is para- 

metrically stable. 

The author thanks V. V. Rumiantsev and V. I. Rubanovskii for valuable remarks and discus- 
sions. 
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